Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Clin Genet ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424388

RESUMO

Central nervous system (CNS) dural arteriovenous fistulas (DAVF) have been reported in PTEN-related hamartoma tumor syndrome (PHTS). However, PHTS-associated DAVF remain an underexplored field of the PHTS clinical landscape. Here, we studied cases with a PTEN pathogenic variant identified between 2007 and 2020 in our laboratory (n = 58), and for whom brain imaging was available. Two patients had DAVF (2/58, 3.4%), both presenting at advanced stages: a 34-year-old man with a left lateral sinus DAVF at immediate risk of hemorrhage, and a 21-year-old woman with acute intracranial hypertension due to a torcular DAVF. Interestingly, not all patients had 3D TOF/MRA, the optimal sequences to detect DAVF. Early diagnosis of DAVF can be lifesaving, and is easier to treat compared to developed, proliferative, or complex lesions. As a result, one should consider brain MRI with 3D TOF/MRA in PHTS patients at genetic diagnosis, with subsequent surveillance on a case-by-case basis.

3.
Cells ; 12(13)2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37443841

RESUMO

Primary microcephalies (PMs) are defects in brain growth that are detectable at or before birth and are responsible for neurodevelopmental disorders. Most are caused by biallelic or, more rarely, dominant mutations in one of the likely hundreds of genes encoding PM proteins, i.e., ubiquitous centrosome or microtubule-associated proteins required for the division of neural progenitor cells in the embryonic brain. Here, we provide an overview of the different types of PMs, i.e., isolated PMs with or without malformations of cortical development and PMs associated with short stature (microcephalic dwarfism) or sensorineural disorders. We present an overview of the genetic, developmental, neurological, and cognitive aspects characterizing the most representative PMs. The analysis of phenotypic similarities and differences among patients has led scientists to elucidate the roles of these PM proteins in humans. Phenotypic similarities indicate possible redundant functions of a few of these proteins, such as ASPM and WDR62, which play roles only in determining brain size and structure. However, the protein pericentrin (PCNT) is equally required for determining brain and body size. Other PM proteins perform both functions, albeit to different degrees. Finally, by comparing phenotypes, we considered the interrelationships among these proteins.


Assuntos
Encefalopatias , Microcefalia , Humanos , Microcefalia/genética , Microcefalia/metabolismo , Centrossomo/metabolismo , Encéfalo/metabolismo , Encefalopatias/metabolismo , Tamanho Corporal , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
4.
Am J Hum Genet ; 110(4): 663-680, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36965478

RESUMO

The vast majority of human genes encode multiple isoforms through alternative splicing, and the temporal and spatial regulation of those isoforms is critical for organismal development and function. The spliceosome, which regulates and executes splicing reactions, is primarily composed of small nuclear ribonucleoproteins (snRNPs) that consist of small nuclear RNAs (snRNAs) and protein subunits. snRNA gene transcription is initiated by the snRNA-activating protein complex (SNAPc). Here, we report ten individuals, from eight families, with bi-allelic, deleterious SNAPC4 variants. SNAPC4 encoded one of the five SNAPc subunits that is critical for DNA binding. Most affected individuals presented with delayed motor development and developmental regression after the first year of life, followed by progressive spasticity that led to gait alterations, paraparesis, and oromotor dysfunction. Most individuals had cerebral, cerebellar, or basal ganglia volume loss by brain MRI. In the available cells from affected individuals, SNAPC4 abundance was decreased compared to unaffected controls, suggesting that the bi-allelic variants affect SNAPC4 accumulation. The depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing. Analysis of available fibroblasts from affected individuals showed decreased snRNA expression and global dysregulation of alternative splicing compared to unaffected cells. Altogether, these data suggest that these bi-allelic SNAPC4 variants result in loss of function and underlie the neuroregression and progressive spasticity in these affected individuals.


Assuntos
Processamento Alternativo , Proteínas de Ligação a DNA , Paraparesia Espástica , Fatores de Transcrição , Paraparesia Espástica/genética , Humanos , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Células HeLa , Isoformas de Proteínas/genética , RNA-Seq , Masculino , Feminino , Linhagem , Alelos , Lactente , Pré-Escolar , Criança , Adolescente , Estrutura Secundária de Proteína , RNA Nuclear Pequeno/genética
5.
Nat Commun ; 13(1): 7002, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385105

RESUMO

Patients carrying autosomal dominant mutations in the histone/lysine acetyl transferases CBP or EP300 develop a neurodevelopmental disorder: Rubinstein-Taybi syndrome (RSTS). The biological pathways underlying these neurodevelopmental defects remain elusive. Here, we unravel the contribution of a stress-responsive pathway to RSTS. We characterize the structural and functional interaction between CBP/EP300 and heat-shock factor 2 (HSF2), a tuner of brain cortical development and major player in prenatal stress responses in the neocortex: CBP/EP300 acetylates HSF2, leading to the stabilization of the HSF2 protein. Consequently, RSTS patient-derived primary cells show decreased levels of HSF2 and HSF2-dependent alteration in their repertoire of molecular chaperones and stress response. Moreover, we unravel a CBP/EP300-HSF2-N-cadherin cascade that is also active in neurodevelopmental contexts, and show that its deregulation disturbs neuroepithelial integrity in 2D and 3D organoid models of cerebral development, generated from RSTS patient-derived iPSC cells, providing a molecular reading key for this complex pathology.


Assuntos
Proteína de Ligação a CREB , Proteínas de Choque Térmico , Transtornos do Neurodesenvolvimento , Síndrome de Rubinstein-Taybi , Fatores de Transcrição , Humanos , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Histonas/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Síndrome de Rubinstein-Taybi/genética , Síndrome de Rubinstein-Taybi/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo
6.
Dev Med Child Neurol ; 64(4): 509-517, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35726608

RESUMO

AIM: To characterize the cortical structure, developmental, and cognitive profiles of patients with WD repeat domain 62 (WDR62)-related primary microcephaly. METHOD: In this observational study, we describe the developmental, neurological, cognitive, and brain imaging characteristics of 17 patients (six males, 11 females; mean age 12y 3mo standard deviation [SD] 5y 8mo, range 5y-24y 6mo) and identify 14 new variants of WDR62. We similarly analyse the phenotypes and genotypes of the 59 previously reported families. RESULTS: Brain malformations, including pachygyria, neuronal heterotopia, schizencephaly, and microlissencephaly, were present in 11 out of 15 patients. The mean full-scale IQ of the 11 assessed patients was 51.8 (standard deviation [SD] 12.6, range 40-70). Intellectual disability was severe in four patients, moderate in four, and mild in three. Scores on the Vineland Adaptive Behavior Scales obtained from 10 patients were low for communication and motor skills (mean 38.29, SD 7.74, and 37.71, SD 5.74 respectively). The socialization score was higher (mean 47.14, SD 12.39). We found a significant difference between scores for communication and daily living skills (mean 54.43, SD 11.6; p=0.001, one-way analysis of variance). One patient displayed progressive ataxia. INTERPRETATION: WDR62-related cognitive consequences may be less severe than expected because 3 out of 11 of the assessed patients had only mild intellectual disability and relatively preserved abilities of autonomy in daily life. We identified progressive ataxia in the second decade of life in one patient, which should encourage clinicians to follow up patients in the long term.


Assuntos
Proteínas de Ciclo Celular , Deficiência Intelectual , Microcefalia , Proteínas do Tecido Nervoso , Adolescente , Ataxia , Proteínas de Ciclo Celular/genética , Criança , Pré-Escolar , Feminino , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Masculino , Microcefalia/diagnóstico , Microcefalia/genética , Proteínas do Tecido Nervoso/genética , Adulto Jovem
7.
Genet Med ; 24(2): 492-498, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906476

RESUMO

PURPOSE: Biallelic loss-of-function variants in ST3GAL5 cause GM3 synthase deficiency (GM3SD) responsible for Amish infantile epilepsy syndrome. All Amish patients carry the homozygous p.(Arg288Ter) variant arising from a founder effect. To date only 10 patients from 4 non-Amish families have been reported. Thus, the phenotypical spectrum of GM3SD due to other variants and other genetic backgrounds is still poorly known. METHODS: We collected clinical and molecular data from 16 non-Amish patients with pathogenic ST3GAL5 variants resulting in GM3SD. RESULTS: We identified 12 families originating from Reunion Island, Ivory Coast, Italy, and Algeria and carrying 6 ST3GAL5 variants, 5 of which were novel. Genealogical investigations and/or haplotype analyses showed that 3 of these variants were founder alleles. Glycosphingolipids quantification in patients' plasma confirmed the pathogenicity of 4 novel variants. All patients (N = 16), aged 2 to 12 years, had severe to profound intellectual disability, 14 of 16 had a hyperkinetic movement disorder, 11 of 16 had epilepsy and 9 of 16 had microcephaly. Other main features were progressive skin pigmentation anomalies, optic atrophy or pale papillae, and hearing loss. CONCLUSION: The phenotype of non-Amish patients with GM3SD is similar to the Amish infantile epilepsy syndrome, which suggests that GM3SD is associated with a narrow and severe clinical spectrum.


Assuntos
Epilepsia , Epilepsia/complicações , Epilepsia/genética , Homozigoto , Humanos , Sialiltransferases/deficiência , Sialiltransferases/genética
8.
J Med Genet ; 59(10): 965-975, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34930816

RESUMO

BACKGROUND: High-impact pathogenic variants in more than a thousand genes are involved in Mendelian forms of neurodevelopmental disorders (NDD). METHODS: This study describes the molecular and clinical characterisation of 28 probands with NDD harbouring heterozygous AGO1 coding variants, occurring de novo for all those whose transmission could have been verified (26/28). RESULTS: A total of 15 unique variants leading to amino acid changes or deletions were identified: 12 missense variants, two in-frame deletions of one codon, and one canonical splice variant leading to a deletion of two amino acid residues. Recurrently identified variants were present in several unrelated individuals: p.(Phe180del), p.(Leu190Pro), p.(Leu190Arg), p.(Gly199Ser), p.(Val254Ile) and p.(Glu376del). AGO1 encodes the Argonaute 1 protein, which functions in gene-silencing pathways mediated by small non-coding RNAs. Three-dimensional protein structure predictions suggest that these variants might alter the flexibility of the AGO1 linker domains, which likely would impair its function in mRNA processing. Affected individuals present with intellectual disability of varying severity, as well as speech and motor delay, autistic behaviour and additional behavioural manifestations. CONCLUSION: Our study establishes that de novo coding variants in AGO1 are involved in a novel monogenic form of NDD, highly similar to the recently reported AGO2-related NDD.


Assuntos
Proteínas Argonautas , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Aminoácidos/genética , Heterozigoto , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , RNA Mensageiro , Proteínas Argonautas/genética
9.
BMC Med Educ ; 21(1): 529, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645453

RESUMO

BACKGROUND: Many initiatives have emerged worldwide to handle the surge of hospitalizations during the SARS-CoV-2 pandemic. In France, the University of Paris North called on its medical students, whose status makes them integral members of the healthcare staff, to volunteer in their capacity of medical students and/or as nurses/nursing aids in understaffed intensive care units and other Covid-19 services. We attempted to evaluate their commitment, whether the pandemic affected their certainty for the medical profession and career choices, and how they scored their sadness and anxiety levels. METHODS: The University of Paris North took a weekly official census of the involvement of 1205 4th-6th year medical students during the first lockdown in France. Six weeks after the lockdown began (May 4th), an e-questionnaire was sent to 2145 2nd-6th year medical students. The survey lasted 4 weeks and documented volunteering by medical students, the association between the pandemic and certainty for their profession, their choice of medical specialty and factors that influenced sadness and anxiety scores. RESULTS: 82% of 4th-6th year medical students volunteered to continue their internship or be reassigned to COVID-19 units. Of 802 2nd-6th year students who completed the e-questionnaire, 742 (93%) volunteered in Covid-19 units, of which half acted as nurses. This engagement reinforced the commitment of 92% of volunteers to become physicians. However, at the peak of the outbreak, 17% had doubts about their ability to be physicians, while 12% reconsidered their choice of future specialty. Finally, 38% of students reported a score of 7/10 or more on the sadness scale, and 43% a score of 7/10 or more for anxiety. Neither study year nor service influenced sadness or anxiety scores. However, gender influenced both, with women scoring significantly higher than men (p < 0.0001). CONCLUSION: Medical students of the University of Paris North who made an early and unconditional commitment to help hospital staff handle the pandemic constituted a powerful healthcare reserve force during the crisis. Although the vast majority remained convinced that they want to become physicians, this experience came at a significant psychological cost, especially for women. Alleviating this cost would improve future crisis responses.


Assuntos
COVID-19 , Médicos , Estudantes de Medicina , Controle de Doenças Transmissíveis , Feminino , Humanos , Masculino , SARS-CoV-2 , Inquéritos e Questionários
10.
Genet Med ; 23(11): 2150-2159, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34345024

RESUMO

PURPOSE: DYRK1A syndrome is among the most frequent monogenic forms of intellectual disability (ID). We refined the molecular and clinical description of this disorder and developed tools to improve interpretation of missense variants, which remains a major challenge in human genetics. METHODS: We reported clinical and molecular data for 50 individuals with ID harboring DYRK1A variants and developed (1) a specific DYRK1A clinical score; (2) amino acid conservation data generated from 100 DYRK1A sequences across different taxa; (3) in vitro overexpression assays to study level, cellular localization, and kinase activity of DYRK1A mutant proteins; and (4) a specific blood DNA methylation signature. RESULTS: This integrative approach was successful to reclassify several variants as pathogenic. However, we questioned the involvement of some others, such as p.Thr588Asn, still reported as likely pathogenic, and showed it does not cause an obvious phenotype in mice. CONCLUSION: Our study demonstrated the need for caution when interpreting variants in DYRK1A, even those occurring de novo. The tools developed will be useful to interpret accurately the variants identified in the future in this gene.


Assuntos
Deficiência Intelectual , Microcefalia , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Animais , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Camundongos , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética
11.
Mol Genet Genomic Med ; 9(9): e1768, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34402213

RESUMO

BACKGROUND: Primary microcephaly (PM) is defined as a significant reduction in occipitofrontal circumference (OFC) of prenatal onset. Clinical and genetic heterogeneity of PM represents a diagnostic challenge. METHODS: We performed detailed phenotypic and genomic analyses in a large cohort (n = 169) of patients referred for PM and could establish a molecular diagnosis in 38 patients. RESULTS: Pathogenic variants in ASPM and WDR62 were the most frequent causes in non-consanguineous patients in our cohort. In consanguineous patients, microarray and targeted gene panel analyses reached a diagnostic yield of 67%, which contrasts with a much lower rate in non-consanguineous patients (9%). Our series includes 11 novel pathogenic variants and we identify novel candidate genes including IGF2BP3 and DNAH2. We confirm the progression of microcephaly over time in affected children. Epilepsy was an important associated feature in our PM cohort, affecting 34% of patients with a molecular confirmation of the PM diagnosis, with various degrees of severity and seizure types. CONCLUSION: Our findings will help to prioritize genomic investigations, accelerate molecular diagnoses, and improve the management of PM patients.


Assuntos
Consanguinidade , Epilepsia/genética , Genótipo , Microcefalia/genética , Fenótipo , Proteínas de Ciclo Celular/genética , Criança , Epilepsia/epidemiologia , Epilepsia/patologia , Feminino , Frequência do Gene , Heterogeneidade Genética , Humanos , Incidência , Masculino , Microcefalia/complicações , Microcefalia/patologia , Proteínas do Tecido Nervoso/genética
12.
J Clin Immunol ; 41(3): 603-609, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33411153

RESUMO

Whilst upregulation of type I interferon (IFN) signaling is common across the type I interferonopathies (T1Is), central nervous system (CNS) involvement varies between these disorders, the basis of which remains unclear. We collected cerebrospinal fluid (CSF) and serum from patients with Aicardi-Goutières syndrome (AGS), STING-associated vasculopathy with onset in infancy (SAVI), presumed monogenic T1Is (pT1I), childhood systemic lupus erythematosus with neuropsychiatric features (nSLE), non-IFN-related autoinflammation (AI) and non-inflammatory hydrocephalus (as controls). We measured IFN-alpha protein using digital ELISA. Eighty-two and 63 measurements were recorded respectively in CSF and serum of 42 patients and 6 controls. In an intergroup comparison (taking one sample per individual), median CSF IFN-alpha levels were elevated in AGS, SAVI, pT1I, and nSLE compared to AI and controls, with levels highest in AGS compared to all other groups. In AGS, CSF IFN-alpha concentrations were higher than in paired serum samples. In contrast, serum IFN was consistently higher compared to CSF levels in SAVI, pT1I, and nSLE. Whilst IFN-alpha is present in the CSF and serum of all IFN-related diseases studied here, our data suggest the primary sites of IFN production in the monogenic T1I AGS and SAVI are, respectively, the CNS and the periphery. These results inform the diagnosis of, and future therapeutic approaches to, monogenic and multifactorial T1Is.


Assuntos
Suscetibilidade a Doenças , Regulação da Expressão Gênica , Interferon Tipo I/genética , Interferon-alfa/genética , Especificidade de Órgãos/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Interferon Tipo I/líquido cefalorraquidiano , Interferon Tipo I/metabolismo , Interferon-alfa/líquido cefalorraquidiano , Interferon-alfa/metabolismo , Masculino , Mutação , Fenótipo , Estudos Retrospectivos , Adulto Jovem
13.
J Med Genet ; 57(6): 389-399, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32015000

RESUMO

BACKGROUND: Primary hereditary microcephaly (MCPH) comprises a large group of autosomal recessive disorders mainly affecting cortical development and resulting in a congenital impairment of brain growth. Despite the identification of >25 causal genes so far, it remains a challenge to distinguish between different MCPH forms at the clinical level. METHODS: 7 patients with newly identified mutations in CDK5RAP2 (MCPH3) were investigated by performing prospective, extensive and systematic clinical, MRI, psychomotor, neurosensory and cognitive examinations under similar conditions. RESULTS: All patients displayed neurosensory defects in addition to microcephaly. Small cochlea with incomplete partition type II was found in all cases and was associated with progressive deafness in 4 of them. Furthermore, the CDK5RAP2 protein was specifically identified in the developing cochlea from human fetal tissues. Microphthalmia was also present in all patients along with retinal pigmentation changes and lipofuscin deposits. Finally, hypothalamic anomalies consisting of interhypothalamic adhesions, a congenital midline defect usually associated with holoprosencephaly, was detected in 5 cases. CONCLUSION: This is the first report indicating that CDK5RAP2 not only governs brain size but also plays a role in ocular and cochlear development and is necessary for hypothalamic nuclear separation at the midline. Our data indicate that CDK5RAP2 should be considered as a potential gene associated with deafness and forme fruste of holoprosencephaly. These children should be given neurosensory follow-up to prevent additional comorbidities and allow them reaching their full educational potential. TRIAL REGISTRATION NUMBER: NCT01565005.


Assuntos
Proteínas de Ciclo Celular/genética , Doenças Cocleares/genética , Microcefalia/genética , Proteínas do Tecido Nervoso/genética , Criança , Pré-Escolar , Cóclea/diagnóstico por imagem , Cóclea/metabolismo , Cóclea/patologia , Doenças Cocleares/diagnóstico por imagem , Doenças Cocleares/patologia , Anemia de Fanconi/genética , Anemia de Fanconi/patologia , Feminino , Humanos , Hipotálamo/diagnóstico por imagem , Hipotálamo/patologia , Lactente , Imageamento por Ressonância Magnética , Masculino , Microcefalia/diagnóstico por imagem , Microcefalia/patologia , Mutação , Neurogênese/genética , Linhagem , Retina/diagnóstico por imagem , Retina/patologia
14.
Hum Mutat ; 41(2): 512-524, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31696992

RESUMO

Primary microcephaly (PM) is characterized by a small head since birth and is vastly heterogeneous both genetically and phenotypically. While most cases are monogenic, genetic interactions between Aspm and Wdr62 have recently been described in a mouse model of PM. Here, we used two complementary, holistic in vivo approaches: high throughput DNA sequencing of multiple PM genes in human patients with PM, and genome-edited zebrafish modeling for the digenic inheritance of PM. Exomes of patients with PM showed a significant burden of variants in 75 PM genes, that persisted after removing monogenic causes of PM (e.g., biallelic pathogenic variants in CEP152). This observation was replicated in an independent cohort of patients with PM, where a PM gene panel showed in addition that the burden was carried by six centrosomal genes. Allelic frequencies were consistent with digenic inheritance. In zebrafish, non-centrosomal gene casc5 -/- produced a severe PM phenotype, that was not modified by centrosomal genes aspm or wdr62 invalidation. A digenic, quadriallelic PM phenotype was produced by aspm and wdr62. Our observations provide strong evidence for digenic inheritance of human PM, involving centrosomal genes. Absence of genetic interaction between casc5 and aspm or wdr62 further delineates centrosomal and non-centrosomal pathways in PM.


Assuntos
Centrossomo/metabolismo , Estudos de Associação Genética , Predisposição Genética para Doença , Padrões de Herança , Microcefalia/diagnóstico , Microcefalia/genética , Animais , Bases de Dados Genéticas , Estudos de Associação Genética/métodos , Humanos , Mutação , Fases de Leitura Aberta , Fenótipo , Transdução de Sinais , Sequenciamento do Exoma , Peixe-Zebra
15.
Cell Stress ; 3(12): 369-384, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31832602

RESUMO

Microcephaly is a neurodevelopmental condition characterized by a small brain size associated with intellectual deficiency in most cases and is one of the most frequent clinical sign encountered in neurodevelopmental disorders. It can result from a wide range of environmental insults occurring during pregnancy or postnatally, as well as from various genetic causes and represents a highly heterogeneous condition. However, several lines of evidence highlight a compromised mode of division of the cortical precursor cells during neurogenesis, affecting neural commitment or survival as one of the common mechanisms leading to a limited production of neurons and associated with the most severe forms of congenital microcephaly. In this context, the emergence of the endoplasmic reticulum (ER) and the Golgi apparatus as key guardians of cellular homeostasis, especially through the regulation of proteostasis, has raised the hypothesis that pathological ER and/or Golgi stress could contribute significantly to cortical impairments eliciting microcephaly. In this review, we discuss recent findings implicating ER and Golgi stress responses in early brain development and provide an overview of microcephaly-associated genes involved in these pathways.

17.
Eur J Med Genet ; 62(8): 103704, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31207318

RESUMO

Whole exome sequencing undertaken in two siblings with delayed psychomotor development, absent speech, severe intellectual disability and postnatal microcephaly, with brain malformations consisting of cerebellar atrophy in the eldest affected and hypoplastic corpus callosum in the younger sister; revealed a homozygous intragenic deletion in VPS51, which encodes the vacuolar protein sorting-associated protein, one the four subunits of the Golgi-associated retrograde protein (GARP) and endosome-associated recycling protein (EARP) complexes that promotes the fusion of endosome-derived vesicles with the trans-Golgi network (GARP) and recycling endosomes (EARP). This observation supports a pathogenic effect of VPS51 variants, which has only been reported previously once, in a single child with microcephaly. It confirms the key role of membrane trafficking in normal brain development and homeostasis.


Assuntos
Encéfalo/fisiopatologia , Microcefalia/genética , Malformações do Sistema Nervoso/genética , Proteínas de Transporte Vesicular/genética , Encéfalo/diagnóstico por imagem , Criança , Endossomos/genética , Feminino , Humanos , Masculino , Microcefalia/diagnóstico por imagem , Microcefalia/fisiopatologia , Malformações do Sistema Nervoso/diagnóstico por imagem , Malformações do Sistema Nervoso/fisiopatologia , Transporte Proteico/genética , Rede trans-Golgi/genética
18.
Genet Med ; 21(9): 2043-2058, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30842647

RESUMO

PURPOSE: Microcephaly is a sign of many genetic conditions but has been rarely systematically evaluated. We therefore comprehensively studied the clinical and genetic landscape of an unselected cohort of patients with microcephaly. METHODS: We performed clinical assessment, high-resolution chromosomal microarray analysis, exome sequencing, and functional studies in 62 patients (58% with primary microcephaly [PM], 27% with secondary microcephaly [SM], and 15% of unknown onset). RESULTS: We found severity of developmental delay/intellectual disability correlating with severity of microcephaly in PM, but not SM. We detected causative variants in 48.4% of patients and found divergent inheritance and variant pattern for PM (mainly recessive and likely gene-disrupting [LGD]) versus SM (all dominant de novo and evenly LGD or missense). While centrosome-related pathways were solely identified in PM, transcriptional regulation was the most frequently affected pathway in both SM and PM. Unexpectedly, we found causative variants in different mitochondria-related genes accounting for ~5% of patients, which emphasizes their role even in syndromic PM. Additionally, we delineated novel candidate genes involved in centrosome-related pathway (SPAG5, TEDC1), Wnt signaling (VPS26A, ZNRF3), and RNA trafficking (DDX1). CONCLUSION: Our findings enable improved evaluation and genetic counseling of PM and SM patients and further elucidate microcephaly pathways.


Assuntos
Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Microcefalia/genética , Adolescente , Proteínas de Ciclo Celular/genética , Criança , Pré-Escolar , RNA Helicases DEAD-box/genética , Deficiências do Desenvolvimento/patologia , Exoma/genética , Feminino , Regulação da Expressão Gênica/genética , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Microcefalia/patologia , Mutação , Linhagem , Fenótipo , Ubiquitina-Proteína Ligases/genética , Sequenciamento do Exoma , Via de Sinalização Wnt
19.
Cell Death Dis ; 9(12): 1155, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459303

RESUMO

The authors wish to point out that the name of the first author is appearing incorrectly on Pubmed: it should be El Ghouzzi V (and not Ghouzzi VE). In addition, the words "and p53" appear at the end of the title in the original publication ( https://www.nature.com/articles/cddis2016266 ) and in the previous erratum version ( https://www.nature.com/articles/cddis2016446 ). This is not correct.

20.
Cell Death Dis ; 9(2): 65, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29352115

RESUMO

Cell division and differentiation are two fundamental physiological processes that need to be tightly balanced to achieve harmonious development of an organ or a tissue without jeopardizing its homeostasis. The role played by the centriolar protein STIL is highly illustrative of this balance at different stages of life as deregulation of the human STIL gene expression has been associated with either insufficient brain development (primary microcephaly) or cancer, two conditions resulting from perturbations in cell cycle and chromosomal segregation. This review describes the recent advances on STIL functions in the control of centriole duplication and mitotic spindle integrity, and discusses how pathological perturbations of its finely tuned expression result in chromosomal instability in both embryonic and postnatal situations, highlighting the concept that common key factors are involved in developmental steps and tissue homeostasis.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Microcefalia/genética , Neoplasias/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...